<div dir="ltr"><div class="gmail_quote"><div dir="ltr" class="gmail_attr">Logica Universalis Webinar<br></div><div dir="ltr"><div class="gmail_quote"><div dir="ltr"><div class="gmail_quote"><div dir="ltr"><div class="gmail_quote"><div dir="ltr"><div class="gmail_quote"><div dir="ltr"><div class="gmail_quote"><div dir="ltr"><div class="gmail_quote"><div dir="ltr"><div class="gmail_quote"><div dir="ltr"><div class="gmail_quote"><div dir="ltr"><div class="gmail_quote"><div dir="ltr"><div class="gmail_quote"><div dir="ltr"><div class="gmail_quote"><div dir="ltr"><div class="gmail_quote"><div dir="ltr"><div class="gmail_quote"><div dir="ltr"><div class="gmail_quote"><div dir="ltr"><div class="gmail_quote"><div dir="ltr"><div class="gmail_quote"><div dir="ltr"><div dir="ltr"><div class="gmail_quote"><div dir="ltr"><div class="gmail_quote"><div dir="ltr"><div class="gmail_quote"><div dir="ltr"><div>April 24, 2024 at 4pm CET</div><div><br></div><div>Speaker:  Ori Milstein </div><div><a href="https://philpeople.org/profiles/ori-milstein" target="_blank">https://philpeople.org/profiles/ori-milstein</a><span style="font-family:"Google Sans",Roboto,RobotoDraft,Helvetica,Arial,sans-serif;font-size:14px"><br></span></div><div><br></div><div>Title: "Why the hexagon of opposition is really a triangle: logical structures as geometric shapes"</div><div>Abstract: "This paper suggests a new approach (with old roots) to the</div>study of the connection between logic and geometry. Traditionally, most<br>logic diagrams associate only vertices of shapes with propositions. The<br>new approach, which can be dubbed ’full logical geometry’, aims to<br>associate every element of a shape (edges, faces, etc.) with a proposition.<br>The roots of this approach can be found in the works of Carroll,<br>Jacoby, and more recently, Dubois and Prade. However, its potential<br>has not been duly appreciated, probably because of the complexity of<br>the diagrams in these works. The following study demonstrates how the<br>Hexagon of Opposition can be represented as a triangle and Classical<br>Logic as a tetrahedron (rather than a rhombic dodecahedron). It then<br>applies the approach to modal logic, extending the tetrahedron for the<br>logic KT into a dipyramid and a cube for KD, and finally an octahedron<br><div>for K. Some possible directions for further research are also indicated.."</div><div><a href="https://link.springer.com/journal/11787" target="_blank">https://link.springer.com/journal/11787</a><br></div><div><br></div><div>Associate event</div><div>World Congress on the Square of Opposition</div><div>SQUARE 8 - Costa Rica  Sept 6-13, 2024</div><div><a href="https://sites.google.com/view/square8-2024" target="_blank">https://sites.google.com/view/square8-2024</a><br></div><div>Presented by Pablo Villalobos Morera and Lorenzo Boccafogli </div><div> <br></div><div>Chair : Arnon Avron</div><div><a href="https://www.cs.tau.ac.il/~aa/" target="_blank">https://www.cs.tau.ac.il/~aa/</a><br></div><div>Editorial Board LU</div><div><br></div><div><div><span>Everybody</span> is <span>welcome</span> to <span>join</span>, register here:</div><div><a href="https://cassyni.com/events/VF7GYYaHGPGZiFeSZDibRX" target="_blank">https://cassyni.com/events/VF7GYYaHGPGZiFeSZDibRX</a><font color="#888888"><br></font></div><font color="#888888"><div>Jean-Yves Beziau</div><div>Editor of Logica Universalis and Organizer of LUW</div><div><a href="https://philpeople.org/profiles/jean-yves-beziau" target="_blank">https://philpeople.org/profiles/jean-yves-beziau</a></div></font></div><div><br></div><div><br></div><div><br></div><div><br></div></div>
</div></div>
</div></div>
</div></div>
</div>
</div></div>
</div></div>
</div></div>
</div></div>
</div></div>
</div></div>
</div></div>
</div></div>
</div></div>
</div></div>
</div></div>
</div></div>
</div></div>
</div></div>
</div></div>
</div></div>
</div></div>