<html xmlns:v="urn:schemas-microsoft-com:vml" xmlns:o="urn:schemas-microsoft-com:office:office" xmlns:w="urn:schemas-microsoft-com:office:word" xmlns:m="http://schemas.microsoft.com/office/2004/12/omml" xmlns="http://www.w3.org/TR/REC-html40">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=us-ascii">
<meta name="Generator" content="Microsoft Word 15 (filtered medium)">
<style><!--
/* Font Definitions */
@font-face
{font-family:Wingdings;
panose-1:5 0 0 0 0 0 0 0 0 0;}
@font-face
{font-family:"Cambria Math";
panose-1:2 4 5 3 5 4 6 3 2 4;}
@font-face
{font-family:Calibri;
panose-1:2 15 5 2 2 2 4 3 2 4;}
/* Style Definitions */
p.MsoNormal, li.MsoNormal, div.MsoNormal
{margin:0cm;
font-size:11.0pt;
font-family:"Calibri",sans-serif;
mso-fareast-language:EN-US;}
a:link, span.MsoHyperlink
{mso-style-priority:99;
color:#0563C1;
text-decoration:underline;}
span.EmailStyle17
{mso-style-type:personal-compose;
font-family:"Calibri",sans-serif;
color:windowtext;}
.MsoChpDefault
{mso-style-type:export-only;
font-family:"Calibri",sans-serif;
mso-fareast-language:EN-US;}
@page WordSection1
{size:612.0pt 792.0pt;
margin:72.0pt 72.0pt 72.0pt 72.0pt;}
div.WordSection1
{page:WordSection1;}
/* List Definitions */
@list l0
{mso-list-id:2081639068;
mso-list-template-ids:281019190;}
@list l0:level1
{mso-level-number-format:bullet;
mso-level-text:\F0B7;
mso-level-tab-stop:36.0pt;
mso-level-number-position:left;
text-indent:-18.0pt;
mso-ansi-font-size:10.0pt;
font-family:Symbol;}
@list l0:level2
{mso-level-number-format:bullet;
mso-level-text:o;
mso-level-tab-stop:72.0pt;
mso-level-number-position:left;
text-indent:-18.0pt;
mso-ansi-font-size:10.0pt;
font-family:"Courier New";
mso-bidi-font-family:"Times New Roman";}
@list l0:level3
{mso-level-number-format:bullet;
mso-level-text:\F0A7;
mso-level-tab-stop:108.0pt;
mso-level-number-position:left;
text-indent:-18.0pt;
mso-ansi-font-size:10.0pt;
font-family:Wingdings;}
@list l0:level4
{mso-level-number-format:bullet;
mso-level-text:\F0A7;
mso-level-tab-stop:144.0pt;
mso-level-number-position:left;
text-indent:-18.0pt;
mso-ansi-font-size:10.0pt;
font-family:Wingdings;}
@list l0:level5
{mso-level-number-format:bullet;
mso-level-text:\F0A7;
mso-level-tab-stop:180.0pt;
mso-level-number-position:left;
text-indent:-18.0pt;
mso-ansi-font-size:10.0pt;
font-family:Wingdings;}
@list l0:level6
{mso-level-number-format:bullet;
mso-level-text:\F0A7;
mso-level-tab-stop:216.0pt;
mso-level-number-position:left;
text-indent:-18.0pt;
mso-ansi-font-size:10.0pt;
font-family:Wingdings;}
@list l0:level7
{mso-level-number-format:bullet;
mso-level-text:\F0A7;
mso-level-tab-stop:252.0pt;
mso-level-number-position:left;
text-indent:-18.0pt;
mso-ansi-font-size:10.0pt;
font-family:Wingdings;}
@list l0:level8
{mso-level-number-format:bullet;
mso-level-text:\F0A7;
mso-level-tab-stop:288.0pt;
mso-level-number-position:left;
text-indent:-18.0pt;
mso-ansi-font-size:10.0pt;
font-family:Wingdings;}
@list l0:level9
{mso-level-number-format:bullet;
mso-level-text:\F0A7;
mso-level-tab-stop:324.0pt;
mso-level-number-position:left;
text-indent:-18.0pt;
mso-ansi-font-size:10.0pt;
font-family:Wingdings;}
ol
{margin-bottom:0cm;}
ul
{margin-bottom:0cm;}
--></style><!--[if gte mso 9]><xml>
<o:shapedefaults v:ext="edit" spidmax="1026" />
</xml><![endif]--><!--[if gte mso 9]><xml>
<o:shapelayout v:ext="edit">
<o:idmap v:ext="edit" data="1" />
</o:shapelayout></xml><![endif]-->
</head>
<body lang="EN-GB" link="#0563C1" vlink="#954F72" style="word-wrap:break-word">
<div class="WordSection1">
<p class="MsoNormal">The following publication in Computational Logic may be of interest to recipients of the DL list.<o:p></o:p></p>
<p class="MsoNormal"><o:p> </o:p></p>
<p class="MsoNormal">Ian Pratt-Hartmann: Fragments of First-Order Logic, Oxford University Press, ISBN 978 0 19 286796 4, 650 pp., 2023.<o:p></o:p></p>
<p class="MsoNormal"><a href="https://global.oup.com/academic/product/fragments-of-first-order-logic-9780192867964?cc=gb&lang=en&">https://global.oup.com/academic/product/fragments-of-first-order-logic-9780192867964?cc=gb&lang=en&</a><o:p></o:p></p>
<p class="MsoNormal"><o:p> </o:p></p>
<p class="MsoNormal">A sentence of first-order logic is satisfiable if it is true in some structure, and finitely satisfiable if it is true in some finite structure. The question arises as to whether there exists an algorithm for determining whether a given
formula of first-order logic is satisfiable, or indeed finitely satisfiable. This question was answered negatively in 1936 by Church and Turing (for satisfiability) and in 1950 by Trakhtenbrot (for finite satisfiability). In contrast, the satisfiability and
finite satisfiability problems are algorithmically solvable for restricted subsets—-or, as we say, fragments—-of first-order logic, a fact which is today of considerable interest in Computer Science. This book provides an up-to-date survey of the principal
axes of research, charting the limits of decision in first-order logic and exploring the trade-off between expressive power and complexity of reasoning.<o:p></o:p></p>
<p class="MsoNormal"><o:p> </o:p></p>
<p class="MsoNormal">Divided into three parts, the book considers for which fragments of first-order logic there is an effective method for determining satisfiability or finite satisfiability. Furthermore, if these problems are decidable for some fragment,
what is their computational complexity? Part I focusses on fragments defined by restricting the set of available formulas. Topics covered include the Aristotelian syllogistic and its relatives, the two-variable fragment, the guarded fragment, the quantifier-prefix
fragments and the fluted fragment. Part II investigates logics with counting quantifiers. Starting with De Morgan's numerical generalization of the Aristotelian syllogistic, we proceed to the two-variable fragment with counting quantifiers and its guarded
subfragment, explaining the applications of the latter to the problem of query answering in structured data. Part III concerns logics characterized by semantic constraints, limiting the available interpretations of certain predicates. Taking propositional
modal logic and graded modal logic as our cue, we return to the satisfiability problem for two-variable first-order logic and its relatives, but this time with certain distinguished binary predicates constrained to be interpreted as equivalence relations or
transitive relations. The work finishes, slightly breaching the bounds of first-order logic proper, with a chapter on logics interpreted over trees.<o:p></o:p></p>
</div>
</body>
</html>