<div dir="ltr">
<p class="MsoNormal" style="margin:0cm 0cm 0.0001pt;font-size:12pt;font-family:"Calibri",sans-serif"><span style="font-family:"TimesNewRomanPSMT",serif" lang="EN-GB">Dear colleagues, <span></span></span></p>
<p class="MsoNormal" style="text-align:center;margin:0cm 0cm 0.0001pt;font-size:12pt;font-family:"Calibri",sans-serif" align="center"><b><span style="font-size:13.5pt;font-family:"Times New Roman",serif;color:rgb(255,38,0)" lang="EN-GB"><span> </span></span></b><b><span style="font-size:13.5pt;font-family:"Times New Roman",serif;color:rgb(255,38,0)" lang="EN-GB"><span> </span></span></b></p><p class="MsoNormal" style="text-align:center;margin:0cm 0cm 0.0001pt;font-size:12pt;font-family:"Calibri",sans-serif" align="center"><span style="color:rgb(255,0,255)"><b><span style="font-size:13.5pt;font-family:"Times New Roman",serif" lang="EN-GB">The 1st Special Session on Deep Learning and Ontology</span></b><span style="font-family:"Times New Roman",serif" lang="EN-GB"><span></span></span></span></p><span style="color:rgb(255,0,255)">
</span><p class="MsoNormal" style="text-align:center;margin:0cm 0cm 0.0001pt;font-size:12pt;font-family:"Calibri",sans-serif" align="center"><span style="color:rgb(255,0,255)"><b><span style="font-size:13.5pt;font-family:"Times New Roman",serif" lang="EN-GB">(DLOnto 2020)</span></b></span><span style="font-family:"Times New Roman",serif" lang="EN-GB"><span></span></span></p>
<p class="MsoNormal" style="text-align:center;margin:0cm 0cm 0.0001pt;font-size:12pt;font-family:"Calibri",sans-serif" align="center"><span style="font-family:"Times New Roman",serif" lang="EN-GB"><span> </span></span></p>
<p class="MsoNormal" style="text-align:center;margin:0cm 0cm 0.0001pt;font-size:12pt;font-family:"Calibri",sans-serif" align="center"><b><span style="font-size:13.5pt;font-family:"Times New Roman",serif" lang="EN-GB"><a href="https://www.icmla-conference.org/icmla20/ss/SS-9.pdf"><span style="color:blue">https://www.icmla-conference.org/icmla20/ss/SS-9.pdf</span></a></span></b><span style="font-family:"Times New Roman",serif" lang="EN-GB"><span></span></span></p>
<p class="MsoNormal" style="margin:0cm 0cm 12pt;text-align:center;font-size:12pt;font-family:"Calibri",sans-serif" align="center"><b><span style="font-size:13.5pt;font-family:"Times New Roman",serif" lang="EN-GB"><br>
As part of The 19th IEEE International Conference on Deep Learning and Ontology
(ICMLA 2020)<br>
<a href="http://hpcs2020.cisedu.info" target="_blank"><span style="color:blue">https://www.icmla-conference.org/icmla20/</span></a></span></b><span style="font-family:"Times New Roman",serif" lang="EN-GB"><span></span></span></p>
<p class="MsoNormal" style="text-align:center;margin:0cm 0cm 0.0001pt;font-size:12pt;font-family:"Calibri",sans-serif" align="center"><b><span style="font-size:13.5pt;font-family:"Times New Roman",serif" lang="EN-GB">December 14-17,
2020 Miami, Florida, USA</span></b><span style="font-family:"Times New Roman",serif" lang="EN-GB"><span></span></span></p>
<p class="MsoNormal" style="margin:0cm 0cm 0.0001pt;font-size:12pt;font-family:"Calibri",sans-serif"><span style="font-family:"Times New Roman",serif" lang="EN-GB"><span> </span></span></p>
<p class="MsoNormal" style="margin:0cm 0cm 0.0001pt;font-size:12pt;font-family:"Calibri",sans-serif"><b><span style="font-family:"Times New Roman",serif" lang="EN-GB">Scope and Objectives<span></span></span></b></p>
<p class="MsoNormal" style="margin:0cm 0cm 0.0001pt;font-size:12pt;font-family:"Calibri",sans-serif"><span style="font-family:"TimesNewRomanPSMT",serif" lang="EN-GB">In recent years, deep learning is applied
successfully and achieved state-of-the-art performance in a variety of domains,
such as image analysis and data mining. Despite this success, deep learning
models remain hard to analyze and understand what knowledge is represented in
them, and how they generate decisions. Deep learning meets recently ontologies
and tries to model data representations with many layers of non-linear
transformations. Ontology is a structured knowledge representation that
facilitates data access (data sharing and reuse) and assists the deep learning
process as well. </span><span style="font-family:"Times New Roman",serif" lang="EN-GB"><span></span></span></p>
<p class="MsoNormal" style="margin:0cm 0cm 0.0001pt;font-size:12pt;font-family:"Calibri",sans-serif"><span style="font-family:"TimesNewRomanPSMT",serif" lang="EN-GB">The combination of deep learning and ontologies
might be beneficial for different tasks: (1) Deep Learning for Ontologies:
ontology population, ontology extension, ontology learning, ontology alignment
and integration, and (2) Ontologies for Deep Learning: semantic graph
embeddings, latent semantic representation, hybrid embeddings (symbolic and
semantic representations). </span><span style="font-family:"Times New Roman",serif" lang="EN-GB"><span></span></span></p>
<p class="MsoNormal" style="margin:0cm 0cm 0.0001pt;font-size:12pt;font-family:"Calibri",sans-serif"><span style="font-family:"TimesNewRomanPSMT",serif" lang="EN-GB">This special session aims at demonstrating
recent and future advances in semantic rich deep learning by using ontology
which can reduce the semantic gap between the data, applications, machine
learning process, in order to obtain a semantic-aware approaches. In addition, the
goal of this session is to bring together an area for experts from industry,
science and academia to exchange ideas and present results of on-going research
in structured knowledge and deep learning approaches. </span><span style="font-family:"Times New Roman",serif" lang="EN-GB"><span></span></span></p>
<p class="MsoNormal" style="margin:0cm 0cm 0.0001pt;font-size:12pt;font-family:"Calibri",sans-serif"><span style="font-family:"TimesNewRomanPSMT",serif" lang="EN-GB">This special session invites submissions of
original works that is related –but are not limited to – the topics below: </span><span style="font-family:"Times New Roman",serif" lang="EN-GB"><span></span></span></p>
<ul style="margin-bottom:0cm" type="disc"><li class="MsoNormal" style="margin:0cm 0cm 0.0001pt;font-size:12pt;font-family:"Calibri",sans-serif"><span style="font-family:"TimesNewRomanPSMT",serif" lang="EN-GB">Approaches for construction ontology embeddings </span><span style="font-family:"SymbolMT",serif" lang="EN-GB"><span></span></span></li><li class="MsoNormal" style="margin:0cm 0cm 0.0001pt;font-size:12pt;font-family:"Calibri",sans-serif"><span style="font-family:"TimesNewRomanPSMT",serif" lang="EN-GB">Ontology-based text classification </span><span style="font-family:"SymbolMT",serif" lang="EN-GB"><span></span></span></li><li class="MsoNormal" style="margin:0cm 0cm 0.0001pt;font-size:12pt;font-family:"Calibri",sans-serif"><span style="font-family:"TimesNewRomanPSMT",serif" lang="EN-GB">Learning ontology embeddings </span><span style="font-family:"SymbolMT",serif" lang="EN-GB"><span></span></span></li><li class="MsoNormal" style="margin:0cm 0cm 0.0001pt;font-size:12pt;font-family:"Calibri",sans-serif"><span style="font-family:"TimesNewRomanPSMT",serif" lang="EN-GB">Semantic role labelling </span><span style="font-family:"SymbolMT",serif" lang="EN-GB"><span></span></span></li><li class="MsoNormal" style="margin:0cm 0cm 0.0001pt;font-size:12pt;font-family:"Calibri",sans-serif"><span style="font-family:"TimesNewRomanPSMT",serif" lang="EN-GB">Ontology reasoning with Deep Neural Networks </span><span style="font-family:"SymbolMT",serif" lang="EN-GB"><span></span></span></li><li class="MsoNormal" style="margin:0cm 0cm 0.0001pt;font-size:12pt;font-family:"Calibri",sans-serif"><span style="font-family:"TimesNewRomanPSMT",serif" lang="EN-GB">Ontology debugging and completion using deep learning methods </span><span style="font-family:"SymbolMT",serif" lang="EN-GB"><span></span></span></li><li class="MsoNormal" style="margin:0cm 0cm 0.0001pt;font-size:12pt;font-family:"Calibri",sans-serif"><span style="font-family:"TimesNewRomanPSMT",serif" lang="EN-GB">Deep learning for ontological semantic annotations </span><span style="font-family:"SymbolMT",serif" lang="EN-GB"><span></span></span></li><li class="MsoNormal" style="margin:0cm 0cm 0.0001pt;font-size:12pt;font-family:"Calibri",sans-serif"><span style="font-family:"TimesNewRomanPSMT",serif" lang="EN-GB">Spatial and temporal ontology embeddings </span><span style="font-family:"SymbolMT",serif" lang="EN-GB"><span></span></span></li><li class="MsoNormal" style="margin:0cm 0cm 0.0001pt;font-size:12pt;font-family:"Calibri",sans-serif"><span style="font-family:"TimesNewRomanPSMT",serif" lang="EN-GB">Ontology alignment and matching based on deep learning models </span><span style="font-family:"SymbolMT",serif" lang="EN-GB"><span></span></span></li><li class="MsoNormal" style="margin:0cm 0cm 0.0001pt;font-size:12pt;font-family:"Calibri",sans-serif"><span style="font-family:"TimesNewRomanPSMT",serif" lang="EN-GB">Application of deep ontologies in specific domains (e.g. energy,
medical, IoT) </span><span style="font-family:"SymbolMT",serif" lang="EN-GB"><span></span></span></li><li class="MsoNormal" style="margin:0cm 0cm 0.0001pt;font-size:12pt;font-family:"Calibri",sans-serif"><span style="font-family:"TimesNewRomanPSMT",serif" lang="EN-GB">Ontology learning from text using deep learning models </span><span style="font-family:"SymbolMT",serif" lang="EN-GB"><span></span></span></li><li class="MsoNormal" style="margin:0cm 0cm 0.0001pt;font-size:12pt;font-family:"Calibri",sans-serif"><span style="font-family:"TimesNewRomanPSMT",serif" lang="EN-GB">Deep Linked Data </span><span style="font-family:"SymbolMT",serif" lang="EN-GB"><span></span></span></li><li class="MsoNormal" style="margin:0cm 0cm 0.0001pt;font-size:12pt;font-family:"Calibri",sans-serif"><span style="font-family:"TimesNewRomanPSMT",serif" lang="EN-GB">Real-life and industrially relevant applications: </span><span style="font-family:"SymbolMT",serif" lang="EN-GB"><span></span></span></li><ul style="margin-bottom:0cm" type="disc"><li class="MsoNormal" style="margin:0cm 0cm 0.0001pt;font-size:12pt;font-family:"Calibri",sans-serif"><span style="font-family:"TimesNewRomanPSMT",serif" lang="EN-GB">Recommender Systems based on Knowledge
Graphs </span><span style="font-family:"SymbolMT",serif" lang="EN-GB"><span></span></span></li><li class="MsoNormal" style="margin:0cm 0cm 0.0001pt;font-size:12pt;font-family:"Calibri",sans-serif"><span style="font-family:"TimesNewRomanPSMT",serif" lang="EN-GB">Knowledge Graph-Based Sentiment Analysis </span><span style="font-family:"SymbolMT",serif" lang="EN-GB"><span></span></span></li><li class="MsoNormal" style="margin:0cm 0cm 0.0001pt;font-size:12pt;font-family:"Calibri",sans-serif"><span style="font-family:"TimesNewRomanPSMT",serif" lang="EN-GB">Question Answering exploiting Knowledge
Graphs Embeddings </span><span style="font-family:"SymbolMT",serif" lang="EN-GB"><span></span></span></li><li class="MsoNormal" style="margin:0cm 0cm 0.0001pt;font-size:12pt;font-family:"Calibri",sans-serif"><span style="font-family:"TimesNewRomanPSMT",serif" lang="EN-GB">Link Prediction</span><span style="font-family:"SymbolMT",serif" lang="EN-GB"><span></span></span></li></ul></ul>
<p class="MsoNormal" style="margin:0cm 0cm 0.0001pt;font-size:12pt;font-family:"Calibri",sans-serif"><b><span style="font-family:"TimesNewRomanPS",serif" lang="EN-GB"><br></span></b></p><p class="MsoNormal" style="margin:0cm 0cm 0.0001pt;font-size:12pt;font-family:"Calibri",sans-serif"><b><span style="font-family:"TimesNewRomanPS",serif" lang="EN-GB">Submission Guidelines and Instructions </span></b><span style="font-family:"SymbolMT",serif" lang="EN-GB"><span></span></span></p>
<p class="MsoNormal" style="margin:0cm 0cm 0.0001pt;font-size:12pt;font-family:"Calibri",sans-serif"><span style="font-family:"TimesNewRomanPSMT",serif" lang="EN-GB">Papers submitted for reviewing should conform to
IEEE specifications. Manuscript templates can be downloaded from <a href="http://www.ieee.org/conferences_events/conferences/publishing/templates.html" target="_blank"><span style="color:blue">IEEE website</span></a><a><span style="color:blue">. </span></a>The maximum length
of papers is 8 pages. All the papers will go through double-blind peer review
process. Authors’ names and affiliations should not appear in the submitted
paper. Authors’ prior work should be cited in the third person. Authors should also
avoid revealing their identities and/or institutions in the text, figures,
links, etc.</span><span style="font-family:"SymbolMT",serif" lang="EN-GB"><span></span></span></p>
<p class="MsoNormal" style="margin:0cm 0cm 0.0001pt;font-size:12pt;font-family:"Calibri",sans-serif"><span style="font-family:"TimesNewRomanPSMT",serif" lang="EN-GB">Papers must be submitted via the <a href="https://cmt3.research.microsoft.com/ICMLA2020"><span style="color:blue">CTM
System</span></a> by selecting the track “Special Session on Deep Learning and
Ontology”. All accepted papers must be presented by one of the authors, who
must register. Detailed instructions for submitting papers can be found at <span style="color:rgb(0,102,204)"><a href="http://www.icmla-conference.org/icmla19/howtosubmit.html"><span style="color:blue">How to Submit</span></a>.</span></span></p><p class="MsoNormal" style="margin:0cm 0cm 0.0001pt;font-size:12pt;font-family:"Calibri",sans-serif"><br><span style="font-family:"TimesNewRomanPSMT",serif" lang="EN-GB"><span style="color:rgb(0,102,204)"></span></span><span style="font-family:"SymbolMT",serif" lang="EN-GB"><span></span></span></p>
<p class="MsoNormal" style="margin:0cm 0cm 0.0001pt;font-size:12pt;font-family:"Calibri",sans-serif"><b><span style="font-family:"TimesNewRomanPS",serif" lang="EN-GB">Paper Publication: <br></span></b></p>
<p class="MsoNormal" style="margin:0cm 0cm 0.0001pt;font-size:12pt;font-family:"Calibri",sans-serif"><span style="font-family:"TimesNewRomanPSMT",serif" lang="EN-GB">Accepted papers will be published in the ICMLA
2020 conference proceedings (to be published by IEEE). <br></span></p><p class="MsoNormal" style="margin:0cm 0cm 0.0001pt;font-size:12pt;font-family:"Calibri",sans-serif"><br><span style="font-family:"TimesNewRomanPSMT",serif" lang="EN-GB"></span><span style="font-family:"SymbolMT",serif" lang="EN-GB"><span></span></span></p>
<p class="MsoNormal" style="margin:0cm 0cm 0.0001pt;font-size:12pt;font-family:"Calibri",sans-serif"><b><span style="font-family:"TimesNewRomanPS",serif" lang="EN-GB">Important Dates: <span></span></span></b></p>
<p class="MsoNormal" style="margin:0cm 0cm 0.0001pt;font-size:12pt;font-family:"Calibri",sans-serif"><span style="font-family:"TimesNewRomanPSMT",serif" lang="EN-GB">Submission Deadline: August 6, 2020<br>
Notification of Acceptance: September 4, 2020 <br>
Camera-ready papers & Pre-Registration: October 1, 2020</span></p><p class="MsoNormal" style="margin:0cm 0cm 0.0001pt;font-size:12pt;font-family:"Calibri",sans-serif"><br><span style="font-family:"TimesNewRomanPSMT",serif" lang="EN-GB"><span></span></span></p>
<p class="MsoNormal" style="margin:0cm 0cm 0.0001pt;font-size:12pt;font-family:"Calibri",sans-serif"><b><span style="font-family:"TimesNewRomanPS",serif" lang="EN-GB">Special Session Organizers:</span></b><b><span style="font-family:"Times New Roman",serif" lang="EN-GB"> </span></b><span style="font-family:"Times New Roman",serif" lang="EN-GB"><span></span></span></p>
<p class="MsoNormal" style="margin:0cm 0cm 0.0001pt;font-size:12pt;font-family:"Calibri",sans-serif"><span style="font-family:"TimesNewRomanPSMT",serif">Sarra Ben Abbès,
ENGIE, France<span style="color:rgb(5,99,193)"> </span></span><span style="font-family:"Times New Roman",serif"><span></span></span></p>
<p class="MsoNormal" style="margin:0cm 0cm 0.0001pt;font-size:12pt;font-family:"Calibri",sans-serif"><span style="font-family:"TimesNewRomanPSMT",serif">Rim Hantach, ENGIE,
France</span><span style="font-family:"Times New Roman",serif"><span></span></span></p>
<p class="MsoNormal" style="margin:0cm 0cm 0.0001pt;font-size:12pt;font-family:"Calibri",sans-serif"><span style="font-family:"TimesNewRomanPSMT",serif" lang="EN-GB">Philippe Calvez, ENGIE, France</span></p><p class="MsoNormal" style="margin:0cm 0cm 0.0001pt;font-size:12pt;font-family:"Calibri",sans-serif"><br><span style="font-family:"TimesNewRomanPSMT",serif" lang="EN-GB"><span style="color:rgb(5,99,193)"> </span></span><span style="font-family:"Times New Roman",serif" lang="EN-GB"><span></span></span></p>
<p class="MsoNormal" style="margin:0cm 0cm 0.0001pt;font-size:12pt;font-family:"Calibri",sans-serif"><b><span style="font-family:"TimesNewRomanPS",serif" lang="EN-GB">Program committee: </span></b><span style="font-family:"Times New Roman",serif" lang="EN-GB"><span></span></span></p>
<p class="MsoNormal" style="margin:0cm 0cm 0.0001pt;font-size:12pt;font-family:"Calibri",sans-serif"><span lang="EN-GB">TBD<span></span></span></p>
</div>