<div dir="ltr"><div style="font-size:12.8px">Call For Paper: Semantic Sentiment Analysis Workshop @ESWC2017. </div><div style="font-size:12.8px">==============================<wbr>==============================<wbr>==============================<wbr>==========</div><div style="font-size:12.8px">Dates: May 28th 2017</div><div style="font-size:12.8px">Venue: Portoroz, Slovenia</div><div style="font-size:12.8px">Hashtag: #SentimentAnalysis</div><div style="font-size:12.8px">Conference Site: <a href="http://2017.eswc-conferences.org/" target="_blank">http://2017.eswc-conferences.<wbr>org/</a></div><div style="font-size:12.8px">Workshop Site: <a href="http://www.maurodragoni.com/research/opinionmining/events/" target="_blank">http://www.maurodragoni.com/<wbr>research/opinionmining/events/</a></div><div style="font-size:12.8px">==============================<wbr>==============================<wbr>==============================<wbr>==========</div><div style="font-size:12.8px"><br></div><div style="font-size:12.8px">As the Web rapidly evolves, people are becoming increasingly enthusiastic about interacting, sharing, and collaborating through social networks, online communities, blogs, wikis, and the like. In recent years, this collective intelligence has spread to many different areas, with particular focus on fields related to everyday life such as commerce, tourism, education, and health, causing the size of the social Web to expand exponentially.</div><div style="font-size:12.8px"><br></div><div style="font-size:12.8px">To identify the emotions (e.g. sentiment polarity, sadness, happiness, anger, irony, sarcasm, etc.) and the modality (e.g. doubt, certainty, obligation, liability, desire, etc.) expressed in this continuously growing content is critical to enable the correct interpretation of the opinions expressed or reported about social events, political movements, company strategies, marketing campaigns, product preferences, etc.</div><div style="font-size:12.8px"><br></div><div style="font-size:12.8px">This has raised growing interest both within the scientific community, by providing it with new research challenges, as well as in the business world, as applications such as marketing and financial prediction would gain remarkable benefits.</div><div style="font-size:12.8px"><br></div><div style="font-size:12.8px">One of the main application tasks in this context is opinion mining [1], which is addressed by a significant number of Natural Language Processing techniques, e.g. for distinguishing objective from subjective statements [2], as well as for more fine-grained analysis of sentiment, such as polarity and emotions [8]. Recently, this has been extended to the detection of irony, humor, and other forms of figurative language [3]. In practice, this has led to the organisation of a series of shared tasks on sentiment analysis, including irony and figurative language detection (SemEval 2013, 2014, 2015, 2016), with the production of annotated data and development of running systems.</div><div style="font-size:12.8px"><br></div><div style="font-size:12.8px">However, existing solutions still have many limitations leaving the challenge of emotions and modality analysis still open. For example, there is the need for building/enriching semantic/cognitive resources for supporting emotion and modality recognition and analysis. Additionally, the joint treatment of modality and emotion is, computationally, trailing behind, and therefore the focus of ongoing, current research. Also, while we can produce rather robust deep semantic analysis of natural language, we still need to tune this analysis towards the processing of sentiment and modalities, which cannot be addressed by means of statistical models only, currently the prevailing approaches to sentiment analysis in NLP. The hybridization of NLP techniques with Semantic Web technologies is therefore a direction worth exploring, as recently shown in [4, 5, 6, 7].</div><div style="font-size:12.8px"><br></div><div style="font-size:12.8px">Based on the lessons learnt from the first edition, this year the scope of the workshop is a bit broader (although still focusing on a very specific domain) and accepted submissions will include abstracts and position papers in addition to full papers. The workshops main focus will be discussion rather than presentations, which are seen as seeds for boosting discussion topics, and an expected result will be a joint manifesto and a research roadmap that will provide the Semantic Web community with inspiring research challenges.</div><div style="font-size:12.8px"><br></div><div style="font-size:12.8px">The Workshop will be connected to the ESWC 2017 Semantic Sentiment Analysis Challenge at ESWC2017 (<a href="https://github.com/diegoref/SSAC2017" target="_blank">https://github.com/diegoref/<wbr>SSAC2017</a>). Both the Workshop and the Challenge can benefit from a Google Group, called Semantic Sentiment Analysis Initiative. Please post messages related to the Workshop under the discussion “ESWC 2017 Workshop on Emotions, Modality, Sentiment Analysis and the Semantic Web.”</div><div style="font-size:12.8px"><br></div><div style="font-size:12.8px"><br></div><div style="font-size:12.8px"><br></div><div style="font-size:12.8px">*** Topics of interest ***</div><div style="font-size:12.8px"><br></div><div style="font-size:12.8px">Includes but not limited to:</div><div style="font-size:12.8px">* Ontologies and knowledge bases for emotion recognition</div><div style="font-size:12.8px">* Topic and entity based emotion recognition</div><div style="font-size:12.8px">* Semantics in the evolution of emotions within and across social media systems and topics</div><div style="font-size:12.8px">* Semantic processing of social media for emotion recognition</div><div style="font-size:12.8px">* Contextualised emotion recognition</div><div style="font-size:12.8px">* Comparison of semantic approaches for emotion recognition</div><div style="font-size:12.8px">* Personalised semantic emotion recognition and monitoring</div><div style="font-size:12.8px">* Using semantics for prediction of emotions towards events, people, organisations, etc.</div><div style="font-size:12.8px">* Baselines and datasets for semantic emotion recognition</div><div style="font-size:12.8px">* Semantics in stream-based emotion recognition</div><div style="font-size:12.8px">* Comparison between semantic and non-semantic approaches for emotion recognition</div><div style="font-size:12.8px">* Multimodal emotion recognition</div><div style="font-size:12.8px">* Multilingual sentiment analysis</div><div style="font-size:12.8px">* Challenges in using semantics for emotion recognition</div><div style="font-size:12.8px">* Retrieval of emotion-based documents from repositories</div><div style="font-size:12.8px">* Deep learning and knowledge-enabled approaches for sentiment analysis</div><div style="font-size:12.8px"><br></div><div style="font-size:12.8px"><br></div><div style="font-size:12.8px"><br></div><div style="font-size:12.8px">*** Submissions ***</div><div style="font-size:12.8px"><br></div><div style="font-size:12.8px">Submission criteria are the following:</div><div style="font-size:12.8px">* Papers must comply with the LNCS style</div><div style="font-size:12.8px">* Full research papers (up to 8-10 pages)</div><div style="font-size:12.8px">* Short research papers (up to 4-6 pages)</div><div style="font-size:12.8px">* Position papers (2 pages)</div><div style="font-size:12.8px"><br></div><div style="font-size:12.8px">Papers are submitted in PDF format via the workshop’s EasyChair submission pages (<a href="https://easychair.org/conferences/?conf=emsasw2017" target="_blank">https://easychair.org/<wbr>conferences/?conf=emsasw2017</a> remember to select the topic Workshop) </div><div style="font-size:12.8px">Accepted papers will be published by CEUR–WS. The best paper (according to the reviewers’ rate) will be published within the main conference proceedings.</div><div style="font-size:12.8px"><br></div><div style="font-size:12.8px">We already sent a form request to Springer to include Workshop papers in a Springer book. If the answer is positive (we should know this by mid March 2016) then the accepted papers will be published within the Springer book and not CEUR-WS.</div><div style="font-size:12.8px"><br></div><div style="font-size:12.8px">At least one of the authors of the accepted papers must register for the workshop (pre-conference only option) to be included into the workshop proceedings.</div><div style="font-size:12.8px"><br></div><div style="font-size:12.8px"><br></div><div style="font-size:12.8px">*** Important dates ***</div><div style="font-size:12.8px"><br></div><div style="font-size:12.8px">March 3, 2017, 23:59 CET: Full, Short, and Position papers submission deadline</div><div style="font-size:12.8px">March 31, 2017, 23:59 CET: Notification of acceptance</div><div style="font-size:12.8px">April 13, 2017, 23:59 CET: Camera-ready paper due</div><div style="font-size:12.8px">ESWC 2017 Workshop day: May 28, 2017 the whole day</div><div style="font-size:12.8px"><br></div><div style="font-size:12.8px"><br></div><div style="font-size:12.8px">*** Workshop Chairs ***</div><div style="font-size:12.8px">Mauro Dragoni</div><div style="font-size:12.8px">Diego Reforgiato Recupero</div><div style="font-size:12.8px"><br></div><div style="font-size:12.8px"><br></div><div style="font-size:12.8px"><br></div><div style="font-size:12.8px">*** References ***</div><div style="font-size:12.8px">[1] Bo, P., and Lee, L. (2008). Opinion mining and sentiment analysis. Foundations and Trends in Information Retrieval , 2 (1-2), 1-135.</div><div style="font-size:12.8px">[2] Wiebe, J., and Ellen, R. (2005). Creating Subjective and Objective Sentence Classifiers from Unannotated Texts. Computational Linguistics and Intelligent Text Processing 6th International Conference, CICLing (pp. 486-497). Mexico City: Springer.</div><div style="font-size:12.8px">[3] Paula, C., Sarmento, L., Silva, M. J., and de Oliveira, E. (2009). Clues for detecting irony in user-generated contents: oh…!! it’s so easy;-). Proceedings of the 1st international CIKM workshop on Topic-sentiment analysis for mass opinion (pp. 53-56). ACM.</div><div style="font-size:12.8px">[4] Reforgiato Recupero, D., Presutti, V., Consoli, S., and Gangemi, A. (2014). Sentilo: Frame-Based Sentiment Analysis. Cognitive Computation , 1-15.</div><div style="font-size:12.8px">[5] Saif, H., He, Y., and Alani, H. (2012). Semantic sentiment analysis of Twitter. 11th International Semantic Web Conference (ISWC 2012) (pp. 508-524). Springer.</div><div style="font-size:12.8px">[6] Gangemi, A., Presutti, V., and Reforgiato Recupero, D. (2014). Frame- based detection of opinion holders and topics: a model and a tool. IEEE Computational Intelligence , 9 (1), 20-30.</div><div style="font-size:12.8px">[7] Cambria, E., and Hussain, A. (2012). Sentic Computing: Techniques, Tools, and Applications. Springer.</div><div style="font-size:12.8px">[8] Liu, B. (2012). Sentiment Analysis and Opinion Mining. Synthesis Lectures on Human Language Technologies. Chicago: Morgan & Claypool Publishers.</div><div><br></div>-- <br><div class="gmail_signature"><div dir="ltr"><div><div dir="ltr"><div><div dir="ltr"><div><div dir="ltr">Dr. Mauro Dragoni<div>Researcher at Fondazione Bruno Kessler (FBK-IRST)</div><div>Via Sommarive 18, 38123, Povo, Trento, Italy</div><div>Tel. 0461-314053</div><div><br></div><div><div style="color:rgb(0,0,0)"><font face="arial, helvetica, sans-serif" size="2">########################################</font></div><div style="color:rgb(0,0,0)"><font face="arial, helvetica, sans-serif" size="2">Consider attending</font></div><div style="color:rgb(0,0,0)"><font face="arial, helvetica, sans-serif" size="2">Cognitive Computing track @ ACM SAC 2017</font></div><div style="color:rgb(0,0,0)"><a href="https://saccoco.fbk.eu/" style="color:rgb(17,85,204)" target="_blank"><font face="arial, helvetica, sans-serif" size="2">https://saccoco.fbk.eu/</font></a></div><div style="color:rgb(0,0,0)"><font face="arial, helvetica, sans-serif" size="2">Marrakech, Morocco, April 3-7, 2017</font></div><div style="color:rgb(0,0,0)"><font face="arial, helvetica, sans-serif" size="2">########################################</font></div></div></div></div></div></div></div></div></div></div>
</div>