<div dir="ltr"><p class="MsoNormal"> <br></p>
<p class="MsoNormal"> </p>
<p class="MsoNormal">We have received
many reuqests to extend the paper submission deadline in the last few days, </p>
<p class="MsoNormal">the organization
committee has decided to extend the paper submisison deadline to July 13. </p>
<p class="MsoNormal">This is a firm
deadline. So if you have intension to submit a paper, don’t miss it.</p>
<p class="MsoNormal"> </p>
<p class="MsoNormal"> </p>
<p class="MsoNormal">Call for Papers</p>
<p class="MsoNormal"> </p>
<p class="MsoNormal">2014 IEEE
International Conference on Big Data (IEEE BigData 2014)</p>
<p class="MsoNormal"> </p>
<p class="MsoNormal"><a href="http://cci.drexel.edu/bigdata/bigdata2014/index.htm" target="_blank">http://cci.drexel.edu/bigdata/bigdata2014/index.htm</a></p>
<p class="MsoNormal">October
27-30, 2014, Washington DC, USA</p>
<p class="MsoNormal"> </p>
<p class="MsoNormal">In recent years,
“Big Data” has become a new ubiquitous term. Big Data is transforming </p>
<p class="MsoNormal">science,
engineering, medicine, healthcare, finance, business, and ultimately society
itself. </p>
<p class="MsoNormal">The IEEE Big Data
has established itself as the top tier research conference in Big Data.
The </p>
<p class="MsoNormal">first conference
IEEE Big Data 2013 ( <a href="http://cci.drexel.edu/bigdata/bigdata2013/" target="_blank">http://cci.drexel.edu/bigdata/bigdata2013/</a>
) was held in </p>
<p class="MsoNormal">Santa Clara , CA
from Oct 6-7, 2013, 259 paper submissions for the main conference and 32 </p>
<p class="MsoNormal">paper submissions
for the industry and government program. Of those, 44 regular papers and
53 </p>
<p class="MsoNormal">short papers were
accepted, which translates into a selectivity that is on-par with top
tier </p>
<p class="MsoNormal">conferences. Also,
there were 14 workshops associated with IEEE Big Data 2013 covering
various </p>
<p class="MsoNormal">important topics
related to various aspects of Big Data research, development and </p>
<p class="MsoNormal">applications, and
more than 400 participants from 40 countries attend the 4-day event.</p>
<p class="MsoNormal"> </p>
<p class="MsoNormal"> </p>
<p class="MsoNormal">The IEEE
International Conference on Big Data 2014(IEEE BigData 2014) continues the
success of </p>
<p class="MsoNormal">the IEEE BigData
2013. It will provide a leading forum for disseminating the latest
research </p>
<p class="MsoNormal">in Big Data
Research, Development, and Applications. </p>
<p class="MsoNormal"> </p>
<p class="MsoNormal">We solicit
high-quality original research papers (including significant work-in-progress)
in </p>
<p class="MsoNormal">any aspect of Big
Data with emphasis on 5Vs (Volume, Velocity, Variety, Value and Veracity)
</p>
<p class="MsoNormal">relevant to variety
of data (scientific and engineering, social, sensor/IoT/IoE, and </p>
<p class="MsoNormal">multimedia-audio,
video, image, etc) that contribute to the Big Data challenges. This
includes </p>
<p class="MsoNormal">but is not limited
to the following:</p>
<p class="MsoNormal"> </p>
<p class="MsoNormal"> </p>
<p class="MsoNormal">1.
Big Data Science and Foundations</p>
<p class="MsoNormal">a.
Novel Theoretical Models for Big Data</p>
<p class="MsoNormal">b.
New Computational Models for Big Data</p>
<p class="MsoNormal">c.
Data and Information Quality for Big Data</p>
<p class="MsoNormal">d.
New Data Standards</p>
<p class="MsoNormal"> </p>
<p class="MsoNormal">2.
Big Data Infrastructure</p>
<p class="MsoNormal">a.
Cloud/Grid/Stream Computing for Big Data</p>
<p class="MsoNormal">b.
High Performance/Parallel Computing Platforms for Big Data</p>
<p class="MsoNormal">c.
Autonomic Computing and Cyber-infrastructure, System Architectures,
Design and Deployment</p>
<p class="MsoNormal">d.
Energy-efficient Computing for Big Data</p>
<p class="MsoNormal">e.
Programming Models and Environments for Cluster, Cloud, and Grid
Computing to Support Big Data</p>
<p class="MsoNormal">f.
Software Techniques andArchitectures in Cloud/Grid/Stream
Computing</p>
<p class="MsoNormal">g.
Big Data Open Platforms</p>
<p class="MsoNormal">h.
New Programming Models for Big Data beyond Hadoop/MapReduce, STORM</p>
<p class="MsoNormal">i.
Software Systems to Support Big Data Computing</p>
<p class="MsoNormal"> </p>
<p class="MsoNormal">3.
Big Data Management</p>
<p class="MsoNormal">a.
Search and Mining of variety of data including scientific and
engineering, social, sensor/IoT/IoE, and multimedia data</p>
<p class="MsoNormal">b.
Algorithms and Systems for Big DataSearch</p>
<p class="MsoNormal">c.
Distributed, and Peer-to-peer Search</p>
<p class="MsoNormal">d.
Big Data Search Architectures, Scalability and Efficiency</p>
<p class="MsoNormal">e.
Data Acquisition, Integration, Cleaning, and Best Practices</p>
<p class="MsoNormal">f.
Visualization Analytics for Big Data</p>
<p class="MsoNormal">g.
Computational Modeling and Data Integration</p>
<p class="MsoNormal">h.
Large-scale Recommendation Systems and Social Media Systems</p>
<p class="MsoNormal">i.
Cloud/Grid/Stream Data Mining- Big Velocity Data</p>
<p class="MsoNormal">j.
Link and Graph Mining</p>
<p class="MsoNormal">k.
Semantic-based Data Mining and Data Pre-processing</p>
<p class="MsoNormal">l.
Mobility and Big Data</p>
<p class="MsoNormal">m.
Multimedia and Multi-structured Data- Big Variety Data</p>
<p class="MsoNormal"> </p>
<p class="MsoNormal">4.
Big Data Search and Mining</p>
<p class="MsoNormal">a.
Social Web Search and Mining</p>
<p class="MsoNormal">b.
Web Search</p>
<p class="MsoNormal">c.
Algorithms and Systems for Big Data Search</p>
<p class="MsoNormal">d.
Distributed, and Peer-to-peer Search</p>
<p class="MsoNormal">e.
Big Data Search Architectures, Scalability and Efficiency</p>
<p class="MsoNormal">f.
Data Acquisition, Integration, Cleaning, and Best Practices</p>
<p class="MsoNormal">g.
Visualization Analytics for Big Data</p>
<p class="MsoNormal">h.
Computational Modeling and Data Integration</p>
<p class="MsoNormal">i.
Large-scale Recommendation Systems and Social Media Systems</p>
<p class="MsoNormal">j.
Cloud/Grid/StreamData Mining- Big Velocity Data</p>
<p class="MsoNormal">k.
Link and Graph Mining</p>
<p class="MsoNormal">l.
Semantic-based Data Mining and Data Pre-processing</p>
<p class="MsoNormal">m.
Mobility and Big Data</p>
<p class="MsoNormal">n.
Multimedia and Multi-structured Data- Big Variety Data</p>
<p class="MsoNormal"> </p>
<p class="MsoNormal">5.
Big Data Security & Privacy</p>
<p class="MsoNormal">a.
Intrusion Detection for Gigabit Networks </p>
<p class="MsoNormal">b.
Anomaly and APT Detection in Very Large Scale Systems</p>
<p class="MsoNormal">c.
High Performance Cryptography </p>
<p class="MsoNormal">d.
Visualizing Large Scale Security Data</p>
<p class="MsoNormal">e.
Threat Detection using Big Data Analytics</p>
<p class="MsoNormal">f.
Privacy Threats of Big Data</p>
<p class="MsoNormal">g.
Privacy Preserving Big Data Collection/Analytics</p>
<p class="MsoNormal">h.
HCI Challenges for Big Data Security & Privacy</p>
<p class="MsoNormal">i.
User Studies for any of the above</p>
<p class="MsoNormal">j.
Sociological Aspects of Big Data Privacy</p>
<p class="MsoNormal"> </p>
<p class="MsoNormal">6.
Big Data Applications</p>
<p class="MsoNormal">a.
Complex Big Data Applications in Science, Engineering, Medicine,
Healthcare, Finance, Business, Law, Education, Transportation, Retailing,
Telecommunication</p>
<p class="MsoNormal">b.
Big Data Analytics in Small Business Enterprises (SMEs),</p>
<p class="MsoNormal">c.
Big Data Analytics in Government, Public Sector and Society in General</p>
<p class="MsoNormal">d.
Real-life Case Studies of Value Creation through Big Data Analytics</p>
<p class="MsoNormal">e.
Big Data as a Service</p>
<p class="MsoNormal">f.
Big Data Industry Standards</p>
<p class="MsoNormal">g.
Experiences with Big Data Project Deployments</p>
<p class="MsoNormal"> </p>
<p class="MsoNormal">INDUSTRIAL
Track </p>
<p class="MsoNormal">The Industrial
Track solicits papers describing implementations of Big Data solutions
relevant </p>
<p class="MsoNormal">to industrial
settings. The focus of industry track is on papers that address the
practical, </p>
<p class="MsoNormal">applied, or
pragmatic or new research challenge issues related to the use of Big Data
in </p>
<p class="MsoNormal">industry. We accept
full papers (up to 10 pages) and extended abstracts (2-4 pages). </p>
<p class="MsoNormal"> </p>
<p class="MsoNormal">Student Travel
Award </p>
<p class="MsoNormal">IEEE Big Data
2014 will offer 25 NSF student travel awards to student authors
(including </p>
<p class="MsoNormal">post-doc)
(IEEE Big Data 2013 – 17 student travel awards)</p>
<p class="MsoNormal"> </p>
<p class="MsoNormal"> </p>
<p class="MsoNormal"> </p>
<p class="MsoNormal">Conference
Co-Chairs:</p>
<p class="MsoNormal">Dr. Charu Aggarwal,
IBM T.J Watson Research, USA</p>
<p class="MsoNormal">Prof. Nick Cercone,
York University, Canada</p>
<p class="MsoNormal">Prof. Vasant
Honavar, Penn State University, USA</p>
<p class="MsoNormal"> </p>
<p class="MsoNormal">Program Co-Chairs:</p>
<p class="MsoNormal">Prof. Jimmy Lin,
University of Maryland, USA</p>
<p class="MsoNormal">Prof. Jian Pei,
Simon Fraser University, Canada</p>
<p class="MsoNormal"> </p>
<p class="MsoNormal">Industry and
Government Program Committee Chair</p>
<p class="MsoNormal">Mr. Wo Chang,
National Institute of Standard and Technology, USA</p>
<p class="MsoNormal">Dr. Raghunath
Nambiar, Cisco Systems Inc, USA</p>
<p class="MsoNormal"> </p>
<p class="MsoNormal">BigData Steering
Committee Chair:</p>
<p class="MsoNormal">Prof. Xiaohua Tony
Hu, Drexel University, USA, <a href="mailto:thu@cis.drexel.edu" target="_blank">thu@cis.drexel.edu</a> </p>
<p class="MsoNormal"> </p>
<p class="MsoNormal">Paper Submission:</p>
<p class="MsoNormal">Please submit a
full-length paper (upto9 page IEEE 2-column format) through the online </p>
<p class="MsoNormal">submission system.</p>
<p class="MsoNormal"><a href="http://wi-lab.com/cyberchair/2014/bigdata14/cbc_index.php" target="_blank">http://wi-lab.com/cyberchair/2014/bigdata14/cbc_index.php</a></p>
<p class="MsoNormal"> </p>
<p class="MsoNormal">Papers should be
formatted to IEEE Computer Society Proceedings Manuscript Formatting </p>
<p class="MsoNormal">Guidelines (see
link to "formatting instructions" below).</p>
<p class="MsoNormal"> </p>
<p class="MsoNormal">Formatting
Instructions</p>
<p class="MsoNormal">8.5" x
11" (DOC, PDF) </p>
<p class="MsoNormal">LaTex Formatting
Macros</p>
<p class="MsoNormal"> </p>
<p class="MsoNormal">Important
Dates: </p>
<p class="MsoNormal">Electronic
submission of full papers: July 13, 2014</p>
<p class="MsoNormal">Notification of
paper acceptance: Sept 1, 2014</p>
<p class="MsoNormal">Camera-ready of
accepted papers: Sept 25, 2014</p>
<p class="MsoNormal">Conference: October
27-30, 2014</p>
<p class="MsoNormal"> </p>
<p class="MsoNormal"> </p>
<p class="MsoNormal">To subscribe to
this list, the user sends an email, with blank subject line, to <a href="mailto:listserv@lists.drexel.edu" target="_blank">listserv@lists.drexel.edu</a> . In the text box, the user types:
subscribe BIGDATA.</p>
<p class="MsoNormal">To unsubscribe from
a list, the user sends an email to <a href="mailto:listserv@lists.drexel.edu" target="_blank">listserv@lists.drexel.edu</a> with the message: signoff BIGDATA.</p>
<p class="MsoNormal"> </p>
<p class="MsoNormal"> </p>
<p class="MsoNormal"> </p></div>