<div class="gmail_quote">If I understand correctly, DL handles only unary and binary predicates -- is that supposed to be a limitation? Any n-ary predicates can be encoded as binary ones, e.g., F(a,G(b,c)), right?</div><div class="gmail_quote">
<br></div><div class="gmail_quote">On Wed, Jun 2, 2010 at 8:33 AM, Thomas Schneider <span dir="ltr"><<a href="mailto:schneidt@cs.man.ac.uk">schneidt@cs.man.ac.uk</a>></span> wrote:<br><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex;">
The reason is that most DLs can be embedded into FOL. <div><div></div><div class="h5"><br></div></div></blockquote><div> </div><div>But, can any FOL formula be translated to DL?</div><div><br></div><div>Thanks for the pointer.</div>
<div>Steve</div><div><br></div><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex;"><div><div class="h5">
<br>
On 30 May 2010, at 02:38, Steve W wrote:<br>
<br>
</div></div><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><div><div></div><div class="h5">
Hi all,<br>
<br>
According to the Wikipedia article on DL, it says that the decision problems are more efficient than those of FOL. Are DL decision problems not equivalent to those in FOL? For example, isn't subsumption checking equivalent to checking implication? Is instance checking not equivalent to evaluating the truth value of a predicate given a constant? Assuming what I said is correct, then do all decision problems of DL have an equivalent form in FOL? Which problems of FOL are not supported by DL?<br>
<br>
Thanks for any input.<br>
<br>
Cheers,<br>
Steve<br></div></div><div class="im">
---<br>
** You received this mail via the description logic mailing list; for more **<br>
** information, visit the description logic homepage at <a href="http://dl.kr.org/" target="_blank">http://dl.kr.org/</a>. **<br>
</div></blockquote>
<br>
+----------------------------------------------------------------------+<br>
| Dr Thomas Schneider schneider (at) <a href="http://cs.man.ac.uk" target="_blank">cs.man.ac.uk</a> |<br>
| School of Computer Science <a href="http://www.cs.man.ac.uk/~schneidt" target="_blank">http://www.cs.man.ac.uk/~schneidt</a> |<br>
| Kilburn Building, Room 2.114 phone +44 161 2756136 |<br>
| University of Manchester |<br>
| Oxford Road _///_ |<br>
| Manchester M13 9PL (o~o) |<br>
+-----------------------------------------------------oOOO--(_)--OOOo--+<br>
<br>
Prague (vb.)<br>
To declaim loudly and pompously upon any subject about which the<br>
speaker has less knowledge than at least one other person at the<br>
table.<br>
<br>
Douglas Adams, John Lloyd: The Deeper Meaning of Liff<br>
<br>
<br>
<br>
<br>
<br>
<br>
<br>
<br>---<br>
** You received this mail via the description logic mailing list; for more **<br>
** information, visit the description logic homepage at <a href="http://dl.kr.org/" target="_blank">http://dl.kr.org/</a>. **<br>
<br></blockquote></div><br>